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Abstract

Continual learning aims to refine model parameters for
new tasks while retaining knowledge from previous tasks.
Recently, prompt-based learning has emerged to leverage
pre-trained models to be prompted to learn subsequent
tasks without the reliance on the rehearsal buffer. Although
this approach has demonstrated outstanding results, exist-
ing methods depend on preceding task-selection process
to choose appropriate prompts. However, imperfectness
in task-selection may lead to negative impacts on the per-
formance particularly in the scenarios where the number
of tasks is large or task distributions are imbalanced. To
address this issue, we introduce a novel task-agnostic ap-
proach that focuses on the visual semantic information of
image tokens eliminating the preceding task prediction. By
leveraging the ability of the pre-trained model to discrim-
inate between similar tokens, our method not only sub-
divides the prompt but also eliminates the need for addi-
tional forward pass. Consequently, we achieve competi-
tive performance on four benchmarks while significantly
reducing training time compared to state-of-the-art meth-
ods. The code is available at https://github.com/
pilsHan/I-Prompt

1. Introduction

Continual learning is an adaptive approach to training
deep neural networks, enabling them to adapt and evolve as
they encounter new data streams over time. In contrast to
traditional paradigms that generally train on static dataset,
continual learning focuses on the ability of networks to con-
tinuously learn from non-stationary distributions. This ap-
proach is crucial in real-world applications where the nature
of tasks can dynamically change or expand. The core chal-
lenge in continual learning is to equip the networks with the
capability to integrate new knowledge while retaining pre-
vious knowledge, alleviating catastrophic forgetting [7,24].

The rehearsal-based approach [4, 32, 44], widely used in
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continual learning, aims to mitigate the loss of prior knowl-
edge by periodically retraining the neural network on a sub-
set of previous data using a memory buffer. Although the
rehearsal-based methods have demonstrated impressive re-
sults in addressing catastrophic forgetting problem, they
also raise concerns regarding data privacy and the require-
ment for additional memory buffers. Consequently, there is
a growing demand for the development of a more efficient,
rehearsal-free approach [28, 50–52] that can achieve com-
parable performance than current rehearsal-based methods.

Recently, prompt-based methods [35,41–43] have shown
competitive performance and superior efficiency compared
to rehearsal-based methods, utilizing only a few model pa-
rameters without any memory buffers. These methods en-
hance the performance by training the carefully designed
prompts, while keeping the remaining parameters frozen.
In particular, L2P [43] constructs a prompt pool and match
the output of a pre-trained model as a query to select appro-
priate prompts from the pool. Building upon this founda-
tion, recent works [35, 42] improve efficacy by optimizing
the positions of the prompts within the model and refining
key-query mechanism. These methods have achieved re-
markable success; however, these methods focus on the task
and design task-specific prompts, which involves a task pre-
diction process to select the trained prompts for each task.
Therefore, in contrast to the learning process, the selection
of prompts that are not trained for the input class due to in-
correct task prediction in the inference process where the
task ID is unknown leads to forgetting. In soft-selection
using weighted combination, forgetting is also caused by
the inconsistency of the training and inference process. In
particular, as the task prediction becomes more difficult,
such as the number of classes per task is imbalanced or
the boundary between tasks is blurred, the performance de-
creases due to the wrong prompt selection and it is difficult
to be adaptable to various scenarios.

In this work, we introduce I-Prompt, an image token-
based semantic prompting method that exploits the inherent
semantic information of image classes. As depicted in Fig-
ure 1, we mitigate the risk of selecting the wrong task by
eliminating the traditional task selection process. Instead,
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Figure 1. Overview of the prompt-based continual learning approaches. (a) Previous approaches [41, 42] have selected prompts based
on the output class token of the pre-trained model and their similarity to task-specific prompts, accompanied by a task selection process.
If an aircraft image is properly allocated to task T, which involves aircraft, accurate inference can be expected. However, if it is assigned
to task 1, it leads to forgetting due to the inconsistency between training and inference. (b) Our approach eliminates these erroneous
task-selection process and focuses on semantic information within image itself to assign prompts that are relevant to the image. We exploit
the information of relationships between image-tokens through the representational capability of the pre-trained model.

we prioritize the use of image tokens to effectively harness
the rich semantic information contained within the image
itself. Our work stems from empirical studies on vision
transformer [5], which have demonstrated the effectiveness
of exploiting the attention structure in transformer layers for
clustering similar tokens [23]. Similarly, we are inspired by
previous work [2] that had showed token similarity can be
efficiently computed using only self-attention key, which re-
duces computational costs. Building on these insights, we
introduce a prompting method that not only utilizes token
similarities within images, but also leverages information
about class-specific visual characteristics, offering a more
efficient approach.

In continual learning, the prompt query is designed to be
applied differently depending on the characteristics of the
data to overcome forgetting. In traditional methods, the role
of class tokens is to predict the task to which they belong,
leveraging the zero-shot classification ability of pre-trained
models. Our motivation lies in employing the classifica-
tion ability of the tokens in the attention structure. This
allows us to exploit visual features in the intermediate pro-
cess, rather than predicting the task by replacing the class
token. Moreover, by replacing the task prediction process,
we not only reduce the task dependency, but also reduce the
additional training cost of the prompt selection process. The
traditional method of using the class token as a query for the
prompt requires an additional forward pass in the prompt se-
lection process to use the final output of the model, result-
ing in the inefficiency of performing two forward passes.
In contrast, our method simplifies this process by selecting
the prompts within the transform layers effectively elimi-
nating the need for extra forward pass. Consequently, our
approach enables training and inference only with a single
forward pass since the prompt selection and prediction pro-
cess is conducted simultaneously.

We conducted extensive ablation studies for a detailed
analysis of the proposed methods. In particular, we achieve
competitive performance to the recent state-of-the-art meth-
ods in standard task-balanced benchmarks such as CIFAR-
100 [17], CUB-200 [39], and ImageNet-R/A [10, 11]. Fur-
thermore, we demonstrate the effectiveness of our task-
agnostic approach in task-imbalanced scenarios, particu-
larly on the ImageNet-R and CIFAR-100 benchmarks.

2. Related work
2.1. Continual Learning

Continual learning aims to enhance performance by ac-
quiring new tasks while minimizing the forgetting of knowl-
edge from previous tasks. Representative methods for
solving the forgetting problem in continual learning in-
clude regularization-based methods, rehearsal-based meth-
ods, and dynamic architecture methods. Regularization-
based methods [1, 3, 15, 45] determine the importance of
model parameters for previous tasks and then apply strong
regularization to these important parameters while using
less important parameters for learning new tasks. It miti-
gates forgetting by making the change in loss to the previ-
ous task small while learning new tasks with less impor-
tant parameters. This approach offers the benefit of re-
duced memory requirements for continuous tasks; however,
it faces the challenge of diminished performance, attributed
to updating model parameters without direct access to the
data for previous tasks. Meanwhile, rehearsal-based meth-
ods [20,30,32,44] have achieved high performance by mit-
igating the forgetting problem through the limited size of
memory buffers for the previous tasks. However, they pose
additional memory requirements and raise privacy and se-
curity concerns due to the storage of past task data. On the
other hand, dynamic architecture methods [22,34,40] freeze
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models from previous tasks and add sub-networks for the
new tasks. This method effectively avoids the forgetting
problem but results in a linear increase in model parameters
with each new task, potentially leading to less manageable
models in scenarios with various tasks.

2.2. Prompt-based Continual Learning

A method for adapting to downstream tasks without
updating the model has been proposed in the field of
Natural Language Processing (NLP), focusing on finetun-
ing the large language models [18, 19] using learnable
prompts. This success in NLP tasks is extended to vi-
sion tasks that require parameter-efficient finetuning in re-
cent studies [12, 36, 38]. In continual learning, prompt-
based methods [35, 42, 43] are included in the dynamic
architecture method in that there is an additional param-
eter called a prompt in addition to the model parame-
ters. L2P [43], the first study to employ prompts in con-
tinual learning, achieves meaningful results by selecting
prompts through query-key matching in the query func-
tion and learning only the prompts, using them as addi-
tional inputs to the model. DualPrompt [42] introduces a
task-invariant and task-specific prompts for complementary
learning. S-Prompt [41] proposes task-specific prompts for
domain incremental learning, and predicts domains via k-
means clustering. Furthermore, CODA-Prompt [35], points
out the limitation in query-key matching, where the gradi-
ent does not flow end-to-end, and addresses this by enhanc-
ing learnability through end-to-end training of a prompt di-
rectly from the classification loss. In parallel to prompt-
based methods, Adaptor-based methods [25, 29, 47, 48] are
also investigated in the context of subspace as a method for
efficient continual learning. Furthermore, language-guided
prompt-based approaches [13, 49] have been studied, but
they require an additional memory usage for text encoder.

2.3. Token Similarity in Transformer

Research on efficient transformers [6, 9, 26] is underway
to reduce redundant calculations and enable faster calcula-
tions by downsampling using similarities between tokens.
Token pooling [23] shows that the attention layer of the vi-
sion transformer generates overlapping tokens and proposes
a method for selecting and pooling similar tokens via clus-
tering from features. Furthermore, Token merging [2] fo-
cuses on the self-attention mechanism of the transformer
and explains that the key, calculated by cosine similarity
for the query, inherently contains token information. Our
method is motivated by findings in the literature on effi-
cient transformers that cluster and token similarity can be
calculated through the attention structure in a transformer.
We improve efficiency by obtaining the query on which the
prompts are selected from inside the transformer layer, in-
stead of using output of a pre-trained transformer encoder.

3. Method
3.1. Preliminary

Continual learning protocol. Continual Learning sets up a
learning scenario for sequential tasks T = {1, 2, 3, ..., T},
where T denotes the number of total tasks. Model consists
of a feature extractor and a classifier, each of which is a
parametric model with θ and ϕ as parameters. Model pre-
diction ŷ = fϕ · fθ(x), where fθ and fϕ are the feature ex-
tractor and classifier, respectively. We aim to achieve high
performance on the test data D1:t = {x1:t, y1:t} of all pre-
viously trained tasks while training on the current task data
Dt = {xt, yt} for sequential tasks, where x and y denote
image and label, respectively. Following existing contin-
ual learning studies [35, 42, 43], we focus on class incre-
mental learning scenario. In the class incremental learning
scenario, it is assumed that classes for different tasks do not
overlap (yt∩y1:t−1 = ∅), and there is no information about
which task is in the test process.
Vision transformer. Vision Transformer (ViT) tokenizes
the input image, divides it into patches, and then goes
through the embedding layer and positional encoding as
input to the transformer layer. Therefore, where the fea-
ture for l-th layer is hl, the initial input to the transformer
layer is expressed as h0 = [CLS; IMG1, IMG2, ..., IMGp],
where p is number of patches. The inside of the transformer
layer consists of a Multi-Layer Perceptron (MLP), Layer-
Norm (LN), Multi-Head Self-Attention (MHSA) and resid-
ual connection. The process for each layer is conducted as
follows:

hl+1 = MLP(LN(zl+1) + zl+1),

where zl+1 = MHSA(LN(hl)) + hl.
(1)

The overall ViT process consists of three steps. First,
the input image goes through tokenization and positional
encoding for location information. After the class token is
combined with the image token obtained, the encoder out-
put is determined through several transformer layers. Fi-
nally, the class token from the encoder output is used as
input of the classifier to compute the final prediction.
Traditional prompt matching. Prompt-based continual
learning uses pre-trained ViT as the feature extractor. Since
pre-trained models produce consistent output for the same
input, existing studies use this process as a query func-
tion to select a task-wise prompt. Query-key matching
method [35, 43] selects the prompt with the maximum sim-
ilarity between the query and the prompt key obtained by
query function.

Ks = argmax
i ∈ τ

γ(q(x), ki), (2)

where Ks is selected task-specific prompt key and is an el-
ement of the prompt key set K = {k1, k2, ..., kT }, τ =
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Figure 2. Schematic illustration of I-Prompt. (Left): Within the internal process of the transformer layer, prompts are determined at the
image token level. The determined prompts are then added to the image tokens, becoming the subsequent input. (Right): The process
of matching prompts in the prompt pool. The similarity between the input attention key from the transformer layer and the prompt key is
calculated, and the final prompt is determined by the element-wise product of the calculated similarity and the prompt.

{1, 2, 3, ..., t} is a subset of T and is the set of tasks up to
the current task t. Query function q(x) = fθ(x)[CLS] is
the class token of the ViT encoder output, and γ(·, ·) de-
notes cosine similarity. On the other hand, attention-based
method [35] performs soft selection using attention rather
than hard selection through similarity between queries and
keys, and match prompts by their weighted combination.
Then, the attention-based prompt Pa is defined as follows:

Pa =
∑
i∈τ

γ(q(x)⊙Ai, ki) Pi, (3)

where prompt Pi is element of prompt pool P =
{P1, P2, ..., PT }, Ai is an attention, which represents a
learnable parameter for determining the weighted combi-
nation of prompts, and ⊙ denotes element-wise product.

3.2. Semantic Prompting with Image-token

We aim to develop a task-agnostic method for prompt-
based continual learning that eliminates the task prediction
process. To achieve this, we select the prompts by focusing
on image tokens in the internal structure of the transformer
layer, rather than class token of the query function.
Semantic prompt matching. The self-attention structure
in Transformer replicates the query-key-value through a lin-
ear layer, and attention to the value is determined based on
the cosine similarity between the query and key. In this pro-
cess, the key in the self-attention can be used as a judge that
containing semantic information about the token, which we
use as a prompt query for the input token. In order to ensure
that similar prompts are assigned to visually similar tokens,

the similarity of the prompt keys is calculated based on the
self-attention key and used as a weight for each prompt. The
calculated weight of the prompt is multiplied by the prompt,
and the final prompt for each image token is determined by
their summation. Our final prompt P is defined as follows:

P =
∑
i∈τ

γ(hk, ki)⊙ Pi, (4)

where prompt key ki and prompt Pi are learnable param-
eters, the self-attention key hk = Wkh and Wk is weight
of self-attention key. The final prompt P is split into two
independent prompt {Pk, Pv} ∈ R

Lp
2 ×d, where Lp and d

denote prompt length and feature dimension, respectively,
which are computed with the key and value of the self atten-
tion Semantic prompt matching on similarity between to-
kens selects prompts through visual representation and thus
achieves task-agnostic prompting by focusing on class clas-
sification rather than task prediction.

We counteract catastrophic forgetting by fixing previ-
ously learned prompts, learning new prompts, and then
boosting them. In continual learning, fixing parameters rel-
ative to previous learning prompts is the simplest and effec-
tive method to deal with catastrophic forgetting [31,35,41].
However, taking the prompts for all tasks as input leads
to a linearly increasing number of input prompts depend-
ing on the task. Additionally, considering only the current
task fails to take into account class relationships due to the
isolation between tasks. Hence, we propose a more robust
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prompt P̄ inspired by the boosting algorithm [40].

P̄ = γ(hk, kt)⊙ Pt +

t−1∑
i=1

γ(hk, k̃i)⊙ P̃i. (5)

Note that P̃i and k̃i are fixed parameters and Pt and kt are
learnable parameters. Our method achieves a balance be-
tween stability and plasticity by carefully learning prompts
by fixing the parameters for the previous task and merging
the residual for the newly learned task.
Image token-level prompting. Prompt tuning methods are
divided into prompt-tuning [18] and prefix-tuning [19] for
input depending on the application location of the prompt.

Prompt : h0 = [CLS; IMG1, IMG2, ..., IMGp;Ps], (6)
Prefix : zl+1 = MHSA(LN([hl;Ps])) + hl, (7)

where Ps is the selected prompt, and is determined from the
prompt pool. Previous continual learning methods for as-
signing batch or instance-level prompts are based on these
two methods. In contrast, in our method of applying token-
level prompts, concatenating prompts on input is ineffi-
cient. For computational efficiency and to take advantage
of the prompts selected at the image token level, we adopt a
method that directly adds the prompts to the image token:

I-Prompt : zl+1 = MHSA(LN([hl ⊕ P̄])) + hl, (8)

where ⊕ denotes element-wise sum. We apply our
I-Prompts to the image tokens through a relatively
lightweight sum operation, without any dimensional expan-
sion for multiplicative operations. This allows for efficient
computation despite our allocation of token-level prompts.
Objective function. We optimize the classifier weight ϕ,
prompt P and prompt key K pairs for the fixed model pa-
rameters θ̃. Finally, our objective function is as follows:

argmin
P,K,ϕ

Lcls(fϕ(M · ĥ), y), (9)

where Lcls is cross-entropy loss for classification and M
is a logit mask, which replaces the logits for classes not
included in the training data with negative infinity. Note
that the logit mask [35,42,43] helps prevent forgetting about
previously learned classes by stopping the gradient flow of
the classifier for classes that are not training.

4. Experiments
Datasets. We evaluate our method on continual learning
benchmarks such as CIFAR-100 [17], CUB-200 [39], rendi-
tions of ImageNet [33], specifically ImageNet-R/A [10,11].

• CIFAR-100 is a widely used benchmark for continual
learning and contains 100 classes. The train set and test
set are split into 50,000 and 10,000 images respectively
and consist of the same number of data for all classes.

• CUB-200 is organized into subcategories of birds and
contains 200 classes. The training set consists of 9,430
images, and the test set consists of 2,358 images.

• ImageNet-R includes images from various domains to be
closer to the real problem. It contains 24,000 training im-
ages and 6,000 images for test set. It contains 200 classes.

• ImageNet-A consists of naturally occurring examples
that are incorrectly predicted by models pre-trained with
ImageNet and includes 200 classes. The train set and test
set are split into 5,981 and 1,519 images.

Evaluation scenarios. As a continual learning scenario, we
conduct experiments on task-balanced and task-imbalanced
scenarios. Task-balanced scenarios are traditional evalua-
tion protocols where the class is equally divided between
each task, while task-imbalanced scenarios are settings
where the number of classes per task is not constant, includ-
ing a scenario where half of the class learns on the initial
task, and a random increase scenario where the incremental
class changes dynamically. When the initial learning class
is X and the increasing number of classes is Y, we denote by
BX-IncY. For example, an experiment that trains 50 classes
as base and increases by 10 classes is denoted as B50-Inc10.
Evaluation metrics. We report Avg-Acc and Last-Acc as
evaluation metrics. Let At be the average accuracy for all
classes in task t. where Avg-Acc is the average of the accu-
racy on each task ( 1

T

∑T
t=1 At), and Last-Acc is the accu-

racy for all classes on the final task (AT ).
Implementation details. Our whole experiments are based
on PILOT [37] and conducted with NVIDIA RTX A6000.
We use the Adam [14] optimizer and adjust learning rate us-
ing a cosine scheduling [21]. In accordance with the evalua-
tion protocol outlined in CODA-Prompt [35], we utilize the
ViT-B/16 model pretrained on ImageNet-1K, with a shuf-
fled class order. Additionally, due to the absence of results
for various scenarios from existing methods, we provide re-
production results based on their official implementations.

4.1. Comparison with State-of-the-Arts

In our experiments, we compare with rehearsal-free
prompt-based methods [35, 41–43]. We also present
rehearsal-based methods [32,40,44] and two baselines: up-
per bound and lower bound. Joint-Training serves as the
upper bound of accuracy, representing the method of learn-
ing all classes at once, while Finetuning serves as the lower
bound of accuracy, representing the method of learning new
tasks without any regularization.
Task-imbalanced scenario. Table 1 shows the results
for the task-imbalanced scenario where the distribution of
classes per task is uneven. In this setup, half of all classes
are initially trained, and then the remaining classes are split
according to tasks. Overall, our method demonstrates supe-
rior performance on both the ImageNet-R and CIFAR-100
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Table 1. Comparison results (%) in task-imbalanced scenarios. The methods under comparison are divided into two categories:
rehearsal-based and rehearsal-free approaches, with the best accuracy highlighted in bold.

ImageNet-R CIFAR-100

Method Exemplar size B100-Inc5 B100-Inc10 B100-Inc20 B50-Inc2 B50-Inc5 B50-Inc10
Avg-Acc Last-Acc Avg-Acc Last-Acc Avg-Acc Last-Acc Avg-Acc Last-Acc Avg-Acc Last-Acc Avg-Acc Last-Acc

Joint-Training - - 81.58 - 81.58 - 81.58 - 92.33 - 92.33 - 92.33
iCaRL 20/class 68.48 60.35 68.60 60.33 71.90 64.62 80.46 68.87 83.85 73.63 86.53 79.71
BiC 20/class 73.20 68.92 75.41 71.93 76.84 74.18 81.06 73.96 86.21 80.84 88.41 84.74
Foster 20/class 80.45 77.17 80.13 76.55 79.88 76.60 90.83 87.88 90.67 88.56 90.47 87.80

Finetuning 0/class 59.63 47.37 64.08 57.07 72.49 61.67 67.86 60.21 78.61 69.06 81.14 73.39
L2P 0/class 64.07 52.65 68.84 59.58 73.16 66.63 67.67 49.80 80.21 69.27 86.78 80.57
DualPrompt 0/class 62.36 54.03 66.47 59.82 70.15 65.03 68.81 52.98 81.79 73.44 86.03 80.84
S-Prompt 0/class 70.56 63.97 73.88 69.32 76.13 72.70 71.38 56.10 83.66 75.87 87.82 82.52
CODA-Prompt 0/class 71.24 64.20 75.75 70.88 77.88 73.92 74.58 61.23 85.21 78.23 90.07 85.26

I-Prompt (Ours) 0/class 73.96 67.30 78.01 73.30 79.23 75.82 75.10 63.26 86.66 80.75 90.32 87.09

Table 2. Comparison results (%) in task-balanced scenarios. The comparison methods are categorized into rehearsal-based and
rehearsal-free methods.

ImageNet-R CIFAR-100

Method Exemplar size B0-Inc10 B0-Inc20 B0-Inc40 B0-Inc5 B0-Inc10 B0-Inc20
Avg-Acc Last-Acc Avg-Acc Last-Acc Avg-Acc Last-Acc Avg-Acc Last-Acc Avg-Acc Last-Acc Avg-Acc Last-Acc

Joint-Training - - 81.58 - 81.58 - 81.58 - 92.33 - 92.33 - 92.33
iCaRL 20/class 68.50 56.28 71.82 61.43 75.65 65.60 82.71 69.52 85.30 74.60 87.61 79.20
BiC 20/class 78.49 71.57 80.21 74.85 81.05 76.17 85.21 77.30 88.52 82.72 90.71 86.37
Foster 20/class 83.00 76.52 82.46 76.27 82.32 75.73 91.87 87.22 92.08 87.83 91.41 86.80

Finetuning 0/class 66.75 48.23 71.35 61.40 76.24 64.78 75.83 63.86 79.50 68.01 84.96 75.65
L2P 0/class 75.91 70.13 78.11 72.63 78.78 74.62 84.18 77.70 89.26 84.41 90.54 85.85
DualPrompt 0/class 72.52 66.00 74.94 69.13 74.51 70.05 84.88 77.39 87.39 82.38 88.10 83.46
S-Prompt 0/class 72.90 65.98 75.67 69.72 77.72 72.22 82.34 72.25 87.45 80.64 90.20 85.41
CODA-Prompt 0/class 78.65 72.18 81.44 75.08 81.46 76.72 88.03 80.66 91.45 86.19 92.52 88.40

I-Prompt (Ours) 0/class 79.74 73.22 81.75 75.73 81.86 76.92 89.69 84.62 91.75 87.63 92.69 88.91

Table 3. Comparison results (%) in task-balanced scenarios. Comparison methods are divided into rehearsal methods and rehearsal-free
methods.

ImageNet-A CUB-200

Method Exemplar size B0-Inc10 B0-Inc20 B0-Inc40 B0-Inc10 B0-Inc20 B0-Inc40
Avg-Acc Last-Acc Avg-Acc Last-Acc Avg-Acc Last-Acc Avg-Acc Last-Acc Avg-Acc Last-Acc Avg-Acc Last-Acc

Joint-Training - - 56.81 - 56.81 - 56.81 - 87.79 - 87.79 - 87.79
iCaRL 20/class 49.12 37.33 40.15 32.13 49.09 39.83 89.59 82.44 89.81 84.56 89.07 83.50
BiC 20/class 50.12 38.25 47.21 38.31 50.55 40.75 88.14 83.59 89.19 83.72 89.91 85.33
Foster 20/class 60.28 50.30 57.55 50.63 55.97 49.64 85.26 82.70 81.48 77.65 78.28 70.53

Finetuning 0/class 30.91 13.63 36.94 20.80 44.91 26.27 57.66 36.34 69.80 52.12 77.52 65.31
L2P 0/class 48.73 38.78 53.10 44.70 54.82 48.12 70.02 58.06 77.27 66.54 79.90 71.46
DualPrompt 0/class 55.20 43.05 57.81 47.07 59.77 50.76 77.52 64.80 79.91 69.17 81.57 72.73
S-Prompt 0/class 48.85 35.88 56.51 44.50 60.47 50.10 76.28 63.15 81.57 70.57 85.57 77.78
CODA-Prompt 0/class 54.33 44.63 62.85 52.40 65.74 56.22 76.77 66.58 83.39 73.20 85.76 77.78

I-Prompt (Ours) 0/class 62.28 50.76 65.71 55.83 66.48 56.48 77.29 66.07 84.25 74.64 85.81 78.67

benchmarks, outperforming other state-of-the-art methods.
Specifically, in ImageNet-R, we achieve a significant per-
formance improvement of 2.72% in average accuracy and
3.30% in last accuracy compared to the existing best accu-
racy in the B100-Inc5 setting. In CIFAR-100, we obtain
performance enhancements of up to 1.45% and 2.52% for
average and last accuracy, respectively, in the B50-Inc5 set-
ting. Performance increases significantly as the total num-
ber of tasks increases. This tendency satisfies our objective
of mitigating the forgetting problem that occurs as task pre-
diction becomes more difficult.

Task-balanced scenario. We show the experimental results
for the task-balanced scenario in Tables 2 and 3. The task-
balancing scenario splits all tasks into an equal number of
classes. The task-balanced scenario is the basic experimen-
tal setting of the previous work [35, 42, 43], and there is
no task imbalance problem. Our method achieves competi-
tive performance on CIFAR-100, ImageNet-R/A, and CUB-
200 compared to prompt-based methods. Especially, for
CIFAR-100 B0-Inc5, it achieves 1.66% and 3.96% higher
performance in terms of average accuracy and last accuracy
than before, and in ImageNet-A, which has the largest per-

6992



Table 4. Results (%) on online continual learning scenario.
A higher AUC-Acc indicates that model’s ability to consistently
maintain high accuracy while adapting to new task over the train-
ing. † denotes our reproduced results with their official codes.

Method
CIFAR-100 ImageNet-R

AUC-Acc Last-Acc AUC-Acc Last-Acc

Finetuning 19.71± 3.39 10.42± 4.92 7.51± 3.94 2.29± 0.85
Linear Probing 49.69± 6.09 23.07± 7.33 29.24± 1.26 16.87± 3.14

L2P 57.08± 4.43 41.63± 12.73 29.65± 1.63 19.55± 4.78
DualPrompt 67.07± 4.16 56.82± 3.49 40.11± 1.27 29.24± 4.63
MVP 68.10 ± 4.91 62.59± 2.38 40.60± 1.21 31.96± 3.07
MVP† 67.13± 5.05 63.10± 1.61 38.39± 1.54 31.01± 3.72

I-Prompt (Ours) 67.23± 5.76 63.42 ± 1.48 41.08 ± 1.54 33.27 ± 2.86

Table 5. Results (%) with transfer-based method. We present
the number of tuning parameters and performance of the transfer-
based method with I-Prompt.

Method Tuning CIFAR-100 B0-Inc10 ImageNet-R B0-Inc20
Parameters Avg-Acc Last-Acc Avg-Acc Last-Acc

I-Prompt 1.23M 91.75 87.63 81.75 75.73

SimpleCIL 0 82.31 76.21 67.06 61.28
SimpleCIL + I-Prompt 1.23M 91.25 86.69 79.61 72.48

FeCAM 0 82.65 76.64 62.92 57.15
FeCAM + I-Prompt 1.23M 89.91 85.63 69.25 63.75

RanPAC 2.09M 94.41 90.95 83.28 78.15
RanPAC + I-Prompt 2.02M 94.40 91.15 83.43 78.28

SLCA 85.9M 93.96 89.98 84.71 78.50
SLCA + I-Prompt 87.0M 94.30 90.68 84.87 80.55

formance gap, it achieves a high average accuracy of up
to 7.08% difference. Moreover, it achieves notable perfor-
mance even when compared to rehearsal-based methods,
and even achieves better performance on CIFAR-100 B0-
Inc20. In the task-balanced scenario, the performance im-
provement is large compared to the comparison method in
an experimental environment with many tasks, which is the
same as the tendency of the imbalanced scenario.
Online continual learning scenario. In Table 4, we vali-
date our method in Si-Blurry [27] scenario characterized by
stochastic blurry task boundary, which introduces a more
challenging online continual learning scenario. For this ex-
periment, we adopt AUC-Acc [16] as a metric to evalu-
ate the efficacy of the methods. As a result, we demon-
strate the robustness of our approach, consistently achiev-
ing strong AUC-Acc and Last-Acc results for both CIFAR-
100 and ImageNet-R. We obtain the best performance in
both metrics for ImageNet-R and the best Last-Acc with the
second-best AUC-Acc for CIFAR-100. Remarkably, our
method achieves competitive AUC-Acc performance with-
out explicitly addressing the inherent class imbalance prob-
lem in this scenario. This demonstrates the applicability of
our method in real-world scenarios.

4.2. Further analysis

Comparison with transfer-based Methods. Transfer-
based methods achieve high performance in continual learn-
ing by the simple and effective refinement of the classi-

Table 6. Task prediction analysis. We report task prediction ac-
curacy and last accuracy on ImageNet-R B0-Inc20.

Method Task-Acc Last-Acc

DualPrompt-Query 55.8 68.13
DualPrompt-Perfect Match 100 71.97

S-Prompt-Query 42.6 69.72
S-Prompt-NCM 57.7 63.43
S-Prompt-Perfect Match 100 85.12

I-Prompt No task prediction 75.73

fier through generalized embedding of a pre-trained model.
SimpleCIL [48] constructs a classifier without training by
using class mean vectors, while FeCAM [8] applies classi-
fication based on the moments of each class vector. Ran-
PAC [25] trains the adapter [26] on the first task and in-
troduces a Random Projection layer with additional dimen-
sions between the embedding and classifier. SLCA [46]
aligns the classifier using mean and covariance, while up-
dating the model parameters with a small learning rate dur-
ing training. Furthermore, prompt-based methods that ad-
just embedding can be plug-and-played without conflict
with transfer-based methods that refine classifier. Conse-
quently, we observed consistent performance improvements
when integrating our method with SimpleCIL, FeCAM, and
SLCA, and achieving comparable performance on RanPAC.
Discussion on task prediction process. We demonstrate
the impact of task prediction accuracy on final performance
in the Table 6. The Task-acc denotes the task prediction ac-
curacy, and we observe that the performance decreases as
the task is incorrectly selected by the query key mechanism
compared to predicting the task correctly as an oracle. Du-
alPrompt [42] utilizes both task-invariant and task-specific
prompts, resulting in relatively small performance differ-
ences even when task predictions are incorrect. However, its
overall performance is lower when the task is correctly pre-
dicted, and it remains vulnerable to catastrophic forgetting.
On the other hand, S-Prompt [41], which relies solely on
task-specific prompts, is more resistant to forgetting when
the task is correctly predicted. However, as the accuracy of
task prediction decreases, performance drops dramatically.
These findings experimentally confirm that methods relying
on task prediction suffer from compounded errors in both
task prediction and subsequent classification, leading to re-
duced overall performance.
Efficiency comparison. Table 7 shows the number of train-
ing parameters compared to total model parameters as ad-
ditional memory usage and the learning and inference time
as computation cost. Compared to the previous best per-
formance, our method achieves the best accuracy with less
than half the number of trainable parameters. For training
time and inference time, we achieve a 40-50% reduction
compared to CODA-Prompt, which also achieves the best
performance in comparison to L2P and DualPrompt. Our
method requires only one forward pass in the training and
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Table 7. Efficiency comparison. We provide the number of train-
ing parameters, training and inference times, and accuracy.

Method Tuning Parameters↓ Training Time↓ Inference Time↓ Last-Acc↑
(learnable/total) (ms/image) (ms/image) (%)

Finetune 100% 6.58 0.071 68.01
L2P 0.14% 8.15 0.130 84.41
DualPrompt 0.39% 7.44 0.135 82.38
CODA-Prompt 4.57% 9.47 0.149 86.19

I-Prompt (Ours) 1.43% 5.86 0.088 87.63

Table 8. Stability-plasticity analysis. We present the results of
Forgetting and Intransigence measures.

Method
Forgetting Measure ↓ (%) Intransigence Measure ↓ (%)

B0-Inc5 B0-Inc10 B0-Inc20 B0-Inc5 B0-Inc10 B0-Inc20

L2P 5.61 4.80 7.91 13.64 8.97 7.47
DualPrompt 9.04 6.12 6.35 14.06 9.49 7.87
CODA-Prompt 5.08 4.05 5.12 10.84 6.82 4.22

I-Prompt (Ours) 4.40 4.01 4.84 9.04 6.27 4.32

inference process, while previous methods require an addi-
tional forward pass to obtain the query as a selection crite-
rion for the prompt, for a total of two forward passes. This
allows our method to train and inference efficiently.
Stability and plasticity analysis. Achieving a balance be-
tween stability and plasticity is an important in continual
learning. To analyze the proposed method in terms of stabil-
ity and plasticity, we show the forgetting and intransigence
measure in Table 8. The forgetting and intransigence mea-
sures [3] are an estimate the amount of the model has forgot-
ten and refers to the degree to which a model cannot learn
a new task, respectively. Lower is better for both measures,
with a low forgetting measure means high stability and low
intransigence measure means high plasticity. We measure
the stability and plasticity of our method on CIFAR-100
and achieve performance that outperforms existing meth-
ods. We confirm that the proposed method leads to high per-
formance on plasticity because it directly changes the input
tokens instead of changing them indirectly by concatenating
additional inputs to the prompt, and achieves high stability
by learning the residuals based on boosting algorithm.

4.3. Ablation Studies

Visualization result. We employed the attention key to en-
capsulate semantic information in image tokens, although
any of these vectors can serve this purpose. Indeed, both
the attention query and value contain information about the
similarity between tokens in self-attention, as depicted in
Figure 3. The figure illustrates the result of clustering the
image tokens using the query, key, and value of attention.
We examine the effectiveness of the query, key, and value
through empirical investigations, finally determining that
the attention key serves as the query of the prompt. The
classification ability of the attention key applies not only to
objects in the ground truth but also to the background and
other objects. Therefore, we believe that the attention key
can not only replace the class token but also enhance it.

Figure 3. Prompt query as attention features. We present the
clustering results and performance of image tokens for the query-
key-value of an attention as a prompt query.

Table 9. Effects of each component. We report the performance
of each component in our method and overall performance.

Method
CIFAR-100 ImageNet-R

Avg-Acc Last-Acc Avg-Acc Last-Acc

Baseline 84.06 76.95 73.75 66.93

w/ image token-level prompting 89.17 83.14 78.54 72.40
w/ semantic prompt matching 91.50 87.28 77.85 72.13
w/ both (I-Prompt) 91.75 87.63 81.75 75.73

Effects of each component. We show the experimental re-
sults for each component of the proposed method in Table 9
to investigate the effect of each component on the perfor-
mance. The proposed method consists of semantic prompt
matching and image token-level prompts. The baseline is
a structure consisting of only task-specific prompts in Du-
alprompt, with the addition of prefix tuning for the task-
specific prompt pool. We compare the performance with
image token-level prompting, which directly changes the
image token, and with semantic prompt matching, which
selects prompts based on internal information rather than
task. Both improve performance over the baseline, with the
best performance achieved when both are applied.

5. Conclusion
In this paper, we present a novel task-agnostic prompt-

ing method to address catastrophic forgetting problem in
continual learning. Instead of existing task-dependent ap-
proaches that rely on task-selection, we focus on the se-
mantic features of the images themselves. As a result,
our method not only resolves the negative effects of incor-
rect task-selection, but also improves training efficiency by
compressing the prompt selection process into a single for-
ward pass. Our extensive empirical studies, including both
task-balanced and task-imbalanced scenarios, provide in-
depth insights into task-agnostic approach in prompt-based
continual learning, affirming our method’s effectiveness.
We hope that our approach serve as a valuable groundwork
for moving towards various continual learning scenarios.
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